
PHASE STABILITY OF HYDROGEN-BONDED POLYMER MIXTURES.
III. SPINODAL DIAGRAMS

Julius POUCHLÝ1, Antonín ŽIVNÝ2,* and Antonín SIKORA3

Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic,
162 06 Prague 6, Czech Republic; e-mail: 1 pouchly@imc.cas.cz, 2 zivny@imc.cas.cz,
3 sikora@imc.cas.cz

Received June 1, 1998
Accepted July 8, 1998

Dedicated to the memory of Professor Otto Wichterle.

Relations derived on the basis of the Barker–Guggenheim quasichemical theory were used
for construction of spinodal diagrams (temperature versus composition) of a mixture of two
polymers in which hydrogen bonds and other strong interactions exist. A function depend-
ence of parameters of quasichemical equilibrium, η, was proposed, which has the form of
the Boltzmann function at lower temperatures, but at higher temperatures corresponds to
random mixing. The spinodal diagrams were constructed for several sets of dependences of
η on temperature in a wide temperature range for different chain lengths, r, or for different
values of the content of polar groups in one of the polymers. According to circumstances,
the phase diagram shows one or two temperature regions of phase instability or the phase
instability occurs in a certain range of composition at any temperature. Though the chain
length was chosen equal for both polymers, the phase diagrams are asymmetric in the sense
that the critical points are shifted towards that border of the diagram which corresponds to
the component with a larger relative content of the polar group. The temperature range of
phase instability is strongly influenced by small changes in the relative surface area of polar
groups in the molecules.
Key words: Polymer mixtures; Hydrogen bonds; Quasichemical equilibrium theory; Spinodal
diagrams; Critical solution temperature.

A great variety of different types of interactions occur in a mixture of two
polymers containing both polar groups and nonpolar residues. The misci-
bility of the polymers is enhanced by formation of hydrogen bonds or an-
other type of strong interaction between them; the other interactions may
sometimes lead to limited miscibility even in the case of formation of a
strong interassociation complex (see the preceding communication).

Spinodal curves, i.e., border lines between regions of phase metastability
and instability in the diagram temperature–composition, may acquire very
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different forms in systems with more types of interaction. Coleman and
Painter (see, e.g. refs1,2) calculated model phase diagrams on the basis of the
theory of association equilibria, i.e., under the assumption of chemical
equilibrium of species formed by an action of hydrogen bonds. In our pre-
vious communications3,4, we have shown that a good alternative to the
mentioned theory is the Barker–Guggenheim theory of quasichemical equi-
librium because it describes the influence of all types of contact interac-
tions equally well. We have made calculations of the second derivative of
the Gibbs energy of mixing with respect to composition for a mixture of
polymer component 1 containing polar groups A with polymer component
2 containing polar groups B while both polymers have a nonpolar rest R of
the same chemical nature. In literature3, general relations were derived and
the effect of non-random mixing on thermodynamic behaviour was ana-
lyzed. In literature4, we dealt with systems characterized by strong prefer-
ence for heterocontacts AB, AR and BR and we analyzed the condition of
phase instability at a given temperature. It followed that the phase separa-
tion originates in a difference in relative contents of polar groups in mole-
cules of 1 and 2. This is also supported by small values of constants η of the
quasichemical equilibrium expressing the thermodynamic affinity to for-
mation of heterocontacts. In this paper, we extend our calculations to a
wide range of temperatures, which involves a continuous transition from
large to small deviations from random mixing, and we discuss spinodal dia-
grams temperature–composition for several types of systems. The parame-
ters of the quasichemical equilibria, ηAB, ηAR and ηBR are expressed as
functions of temperature using entropic constants λ and enthalpic parame-
ters ε. In each phase diagram, parameters η thus change from very small or
very large values characteristic of low temperatures to values not far from
unity (random mixing) at higher temperatures. The calculations were made
for several sets of values of λ and ε and evolution of spinodals with increas-
ing length of polymer chains and/or increasing difference in the content of
polar groups A and B in corresponding polymers was followed.

THEORETICAL

The spinodal curve satisfies the condition

( )∂ ∂φ2
1
2 0∆G

T PN /
,

= (1)

at any temperature. (For symbols not explained here, see the paragraph Basic
Equations in our preceding paper4). The second derivative of Gibbs energy
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with respect to composition can be obtained using relations and definitions
given in Eqs (1) through (18) in our previous paper4. In addition, we have
to define functions which assign values of ηKL to a given temperature, ηKL
being the equilibrium constant for a process of formation of an interaction
contact of unlike groups K and L at the expense of contacts of like groups
(KK and LL); cf. Eq. (1), ref.4. We start from the following assumptions:

1. The parameter ηKL can be expressed as the ratio of partition functions
of participating pairs

ηKL
KL

KK LL

q

q q
2

2

= . (2)

2. Partition functions for A–R, B–R and R–R pairs in which at least one
nonpolar group participates have insignificant temperature dependence so
that it can be neglected in comparison with pairs named sub 3.

3. Partition functions for pairs of polar groups A–A, B–B and A–B show
strong temperature dependence at low temperatures determined by bond-
ing energies of pairs. However, in the range of high temperatures, due to
thermal disorientation of groups, the temperature dependence is equally
negligible like with pairs mentioned sub 2 and for very high temperatures,
the condition of random mixing should be fulfilled

lim ( ) .T KL→ ∞ =η 1 (3)

The simplest functional form fulfilling the assumptions just mentioned is
for ηAR and ηBR given by the equation

( )[ ] ( )η λ εK KK KK T KR A;B= + − ≡
−

1
1

exp / .R (4)

The presence of parameters λAA and εAA in the equation for ηAR follows from
assumptions 1 through 3. Under the same assumptions, we obtain for ηAB
the equation

( )[ ]
( )[ ] ( )[ ]
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λKL > 0, εKL < 0 holds in the above equations. ηAR and ηBR parameters thus
acquire very small values at low temperatures and with increasing tempera-
ture, they approach asymptotically (1 + λAA)–1 and (1 + λBB)–1, respectively.
Constants λ reflect a local decrease in entropy due to mutual orientation of
two interacting groups and are then substantially smaller than unity; so,
the condition (3) is satisfied to a good approximation. The temperature de-
pendence of ηAB may be more complex. At low temperatures, the ηAB pa-
rameter can reach very high or very low values depending on the sign of
the difference ∆εAB:

( )lim ln / ,T T→ ≅ −0 η εAB AB∆ R (6)

∆ε ε ε εAB AB AA BB= − +2 ( ) . (7)

At intermediate and higher temperatures, it is a matter of proportions of
λAA, λBB and λAB values whether the ηAB(T) dependence will have a monoto-
nous course or the sign of the difference ηAB – 1 will be changed at some
temperature and, consequently, an extreme on the curve appears. From
these temperature dependences of η parameters, the enthalpy of formation
of A–R contacts at the expense of A–A and R–R contacts follows:

hAR AR AA= − −( ) ,1 η ε (8)

where hAR is related to one mole of A–R contacts. An analogous relation is
valid for B–R contacts. The enthalpy of A–B contacts is given by the relation

hAB AR AA BR BB ABR AB= − − − − + −( ) ( ) ( ) ,1 1 2 1η ε η ε η ε (9)

where the ηABR parameter, pertinent to the quasichemical equilibrium

(1/2)AB + (1/2)RR = (1/2)AR + (1/2)BR (10)

is temperature-dependent according to equation
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( )[ ]η λ εABR AB AB= + −
−

1
1

exp / .RT (11)

The contact enthalpy then depends on temperature due to disorientation of
interacting groups by thermal motion (assumption 3). In the limit for low
temperature, where ηKR → 0, we obtain

h KK KKR
A B= − ≡ε ( ; ) , (12)

hAB AB= ∆ε . (13)

RESULTS

For model calculations of spinodal diagrams, we have chosen sets of λ and ε
values given in Table I. The set of parameters Ic was derived from the set Ia
by exchange of subscripts A for B (and vice versa). In the set Ib, the values
λAA = λBB were calculated as geometrical means of λAA and λBB values in the
set Ia; parameters εAA = εBB are arithmetic means of parameters εAA and εBB
chosen for the set Ia. Consequently, in systems with parameters Ib, ηAR =
ηBR at any temperature.

For each of the (λ, ε) sets, parameters αA, αB, r1 and r2 need to be specified.
Here, αA is the relative area of contact sites of type A in a molecule of com-
ponent 1, and αB is related to B sites in a component 2 molecule; rj stands

Collect. Czech. Chem. Commun. (Vol. 64) (1999)

Hydrogen-Bonded Polymer Mixtures. III 35

TABLE I
Parameters of the temperature dependence of quasi-equilibrium constants

Set λAA λBB λAB
–εAA, J
mol–1 –εBB, J mol–1 –εAB, J mol–1

Ia 0.05477 0.1465 0.07422 13 282 9 818 13 251

Ib 0.08958 0.08958 0.07422 11 550 11 550 13 251

Ic 0.1465 0.05477 0.07422 9 818 13 282 13 251

II 0.00248 1.39 × 10–4 0.00158 19 031 25 034 20 903



for the number of segments in a molecule of component j. We have put r1 =
r2 = r and investigated the effect of r and of (αA – αB) on the course of phase
diagrams.

In order to present as many shapes of spinodals as possible, we have used
a wide range of temperatures from the lowest values up to 600 K. A real sys-
tem may thus correspond only to some sector of our diagrams. On the
other hand, the predicted shapes of spinodals are not confined to tempera-
ture ranges occurring in our diagrams. The phase diagram (or its part),
which originally involves the temperature range from T1

0 to T2
0 , could be

transposed in a qualitatively similar form to the range from T1 to T2 by trans-
formation of constants ε KL

0 and λ KL
0 into constants εKL and λKL (K; L ≡ A; B)

ε εKL KL

T T

T T
=

−
−
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0
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The results of our spinodal calculations will be presented in two parts: In
the first one we use the sets of parameters Ia, Ib and Ic from Table I, the re-
sults obtained for the set II will be given in the second part. The titles of the
two parts involve the important difference in the course of temperature de-
pendence of ηAB, but there are also differences in the mutual positions of
the three η(T) curves.

Monotonous Change of Equilibrium Parameters with Temperature

The temperature dependences of parameters 1/ηAB, ηAR and ηBR for systems
of the set Ia are depicted in Fig. 1. With increasing temperature, ηAB monot-
onously decreases from very high values to values close to unity; however,
in the entire temperature range, ηAB is smaller than ηAR

−1 or ηBR
−1 . The diagram

for the set Ic can be obtained from Fig. 1 by the interchange of curves for
ηAR and ηBR; the common curve ηAR = ηBR for the system Ib is located ap-
proximately in the middle between the curves in Fig. 1. For the system Ia at
temperatures higher than 420 K (but for the system Ic at T < 420 K), ηAR > ηBR.

In this temperature range, the polar group A (with larger relative area)
shows greater affinity to the formation of contacts with the nonpolar group
R than the group B. This improves somewhat miscibility of both compo-
nents in comparison with the system Ib. The opposite conclusion holds for
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the complementary range of temperatures (T < 420 K for Ia; T > 420 K for
Ic). At low temperatures (up to 200 K), we have the case of a polymer–polymer
complex with a simultaneous repulsive interaction of polar and nonpolar
groups; this is just the type of systems we have dealt with in the previous
paper.

The change in the shape of spinodal diagrams with increasing chain
length is depicted in Fig. 2. A high-temperature region of phase instability
appears even at low values of r and its lower critical solution temperature
(LCST) gradually decreases. At r = 550, a closed region of phase instability
appears in the vicinity of 220 K, which quickly extends toward lower
temperatures until its LCST disappears. The lower part of this region (below
100 K) is limited by vertical spinodal branches as it was predicted in the
previous paper for small values of 1/ηAB, ηAR and ηBR on the basis of a negli-
gible temperature dependence of the quantity Z; cf. Eq. (36) and the ensu-
ing analysis in ref.4. However, in the vicinity of 100 K, the spinodal changes
its slope and the region of phase instability somewhat widens. This can be
explained on the basis of Eq. (37) of the previous paper4. At a given temper-
ature, both spinodal points (Z = 0) differ only very little in their composi-
tions φ1 and the slope (∂Z / ∂φ1 ) is then very small. That is why even a small
increase in the derivative ( )∂ ∂

φ
Z T/

1
in the vicinity of 100 K is sufficient for

a significant change in the spinodal slope.
The upper critical solution temperature (UCST) of the low-temperature

region gradually increases with increasing chain length; if r approaches
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FIG. 1
Dependence of parameters of the contact equilibria, 1/ηAB, ηAR and ηBR, on temperature for
systems of set Ia (for constants λ and ε, see Table I)
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800, the UCST approaches the LCST of the high-temperature region so that
at r ≅ 793 , both regions coincide to form a continuous region of the phase
instability. This region widens with increasing r.

The described evolution is summarized in Fig. 3 presenting the depend-
ence of the critical solution temperature on the chain length. The curve has
several branches corresponding successively to the LCST of the
high-temperature region, and to the UCST and LCST of the low-
temperature region. The region of the phase instability lies to the right of
the boundary curve. The behavior of sets Ib and Ic is also depicted in the
same figure. The curves intersect in one point corresponding to critical tem-
perature 420 K and to r = 770. This point corresponds to the intersection of
curves ηAR(T) and ηBR(T), which occurs in sets Ia and Ic at the latter temper-
ature. In the region below 420 K, the system Ia is the least miscible and the
system Ic is the most miscible due to the validity of inequality αA > αB. That
is why the merging of the high-temperature with the low-temperature in-
stability region already occurs in the system set Ia at r ≅ 793, in the set Ib at
r ≅ 1 800 and in the case of the set of systems Ic not until at r ≅ 11 800. On
the other hand, the systems of set Ic show the greatest tendency to phase
segregation at temperatures above 420 K.

Collect. Czech. Chem. Commun. (Vol. 64) (1999)

38 Pouchlý, Živný, Sikora:

FIG. 2
Spinodal diagrams (temperature versus com-
position) for systems of set Ia (for constants
λ and ε, see Table I) differing in the chain
length r (r = r1 = r2), αA = 0.25; αB = 0.10; ● r =
630; ❐ r = 650; ◆ r = 750; ∆ r = 8000.2 0.4 0.6 0.8 1.0φ1
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Equilibrium Parameter ηAB(T) Showing a Maximum

The systems belonging to series II have the temperature dependence of η
parameters substantially different from that in series I. We can see from Fig. 4
that ηAB is smaller than unity at very low temperatures; the affinity to the
complex formation increases with increasing temperature so that ηAB at-
tains its maximum value 2.5 at 285 K and then gradually decreases toward
values close to unity. In comparison with the series I, the parameter attains
substantially lower values. The constant ηAR is smaller than ηBR at tempera-
tures above 250 K ; with a positive difference αA – αB, this leads to a de-
crease in miscibility; however, this factor is overcompensated by the fact
that both the ηAR and ηBR values are significantly higher than those in series
I. The spinodal diagrams of series II also show in many respects a different
temperature dependence of phase instability than in the previous series, as
is obvious from Fig. 5. The low-temperature region of phase instability, sub-
stantiated by a low value of ηAB, already appears with short chains, and its
UCST gradually increases with increasing r until it merges with the LCST of
the high-temperature region. In the range of higher temperatures, a closed
immiscibility region appears at r = 310 and T ≅ 450 K, growing with increas-
ing r more quickly towards higher than towards lower temperatures.
Nevertheless, merging with the low-temperature region occurs at r = 1 950
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FIG. 3
Dependence of the critical solution temperature Tc on the chain length r. Curves: 1 set Ia; 2
set Ib; 3 set Ic (for parameters, see Table I); L lower critical solution temperature, U upper
critical solution temperature
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and T = 320 K. In contrast to systems of series I, both instability regions in
series II assume a substantially wider range of φ1. The described changes in
the critical temperatures with increasing chain length are presented in
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FIG. 4
Dependence of parameters of the contact equilibria, 1/ηAB, ηAR and ηBR, on temperature for
systems of set II (for constants λ and ε, see Table I)

FIG. 5
Spinodal diagrams (temperature versus composi-
tion) for systems of set II (for constants λ and ε,
see Table I) differing in the chain length r (r =
r1 = r2), αA = 0.25; αB = 0.10; ◆ r = 300; ❐ r =
350; ❍ r = 500; × r = 1 000; ∆ r = 2 000; ● r =
4 000
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Fig. 6. In addition, the dependence on the content of polar groups B at con-
stant r and αA is shown in the same graph. This dependence of Tc on αB has
the opposite slope than the dependence of Tc on r and the phase-unstable
systems lie to the left of curve 2. It is clear from the graph that phase be-
haviour is very sensitive to small changes in the surface area of polar
groups; while in the case of curve 1, its branches merge at r = 310 and r = 1 950
(LCST is thus within ∆r = 1 640), in the case of curve 2, we observe the same
effect in the range of αB from 0.108 to 0.093 (corresponding to ∆αB =
0.015). A similar conclusion is valid in the case of systems of series I. An-
other example of the effectiveness of small changes in parameter αB is given
in Fig. 7. Curve 1 is the limit of the curve sequence in Fig. 5 for very long
chains. The region of phase instability is continuous in the entire tempera-
ture range and, owing to great values of r, embraces a wide range of
compositions φ1. It is clear from curve 2 that a small decrease in the differ-
ence αA – αB splits the instability region into two zones separated by a mis-
cibility window, and this holds even for very long chains.

DISCUSSION

The systems of series I and II have a common feature: in a certain range of
r, two temperature regions of phase instability appear which approach each
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FIG. 6
Dependence of the critical solution temperature, Tc, in systems of set II (see Table I) on the
chain length r (full line, αA = 0.25; αB = 0.10) and on the relative content of contact sites of
type B, αB (dashed line, αA = 0.25, r = 500); L lower critical solution temperature, U upper
critical solution temperature
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other with increasing r. Finally, they can merge so that they cover the
whole temperature range studied. Both series differ significantly in the
form of their spinodals.

A significant feature of the phase diagrams displayed is their asymmetry
with respect to the axis φ1 = 0.5: critical points (and often the whole insta-
bility region) are strongly shifted towards the border value φ1 = 1 regardless
of the fact that both hinds of chains contain equal numbers of segments
(r1 = r2). In a classical Flory–Huggins system with constant χ parameter, the
asymmetry can occur just at a significant difference in chain lengths. In our
model systems, the essential factor is non-random mixing (i.e., η parame-
ters different from unity); however, it can only result in asymmetry if the
components differ in their relative contents of polar groups (αA > αB). The
maximum of Z lies in the vicinity of the “point of equivalence” where ψA =
ψB holds. This point corresponds to the composition

θ1 = αB/(αA + αB) and θ2 = αA/(αA + αB) ,

Collect. Czech. Chem. Commun. (Vol. 64) (1999)

42 Pouchlý, Živný, Sikora:

FIG. 7
Spinodal diagrams (temperature versus compo-
sition) for systems of set II (see Table I) with
very long chains differing in values of αB (αA =
0.25). Curves: ◆ αB = 0.1; ❐ αB = 0.105
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at which the component with lower value of α prevails (in our case, θ1 <
0.5). The instability region (Z < 0) is then situated in the opposite half of
the phase diagram (see curve 4 in Fig. 3 of ref.4), i.e., in the region where
the lack of the minority polar groups is especially great.

The asymmetry of the spinodal curve is greater with increasing values of
parameters ηAR, ηBR and 1/ηAB; it is then the greatest in the low-temperature
regions of instability in systems of type I. On the other hand, the UCST of
the high-temperature region in systems of series II lies in the vicinity of φ1 =
0.5 because all three η constants already approach unity in the neighbour-
hood of T = 600 K.

Indeed, strict application of the theory of quasichemical equilibria as-
sumes that in any system at sufficiently high temperatures, all η parameters
approach the value of unity characteristic of random mixing. Conse-
quently, phase stability occurs. Corresponding to this, an upper critical
point can be seen for short-chain mixtures in Fig. 5; for long chains, it may
be expected at higher temperatures. However, the Barker–Guggenheim the-
ory does not include the influence of difference in the thermal expansivity
of both components which is described by the equation-of-state theory5,6.
As it is known, such a difference leads to a limitation of miscibility which
increases with increasing temperature. The miscibility behaviour in this
temperature range could be described by a theory involving the two effects,
which would result in a prohibitively complex algorithm.
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